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1. INTRODUCTION

The present report contains technical matter related to
the research performed at the Department of Physics of the
University of Modena for the Contract number
DAJD45/83/C/0039 "Monte Carlo analysis of guantum transport
and fluctuations in semiconductors". The subject is treated
at three different levels.

a) Part of the research has reached definite conclusions;
in this case the material is well-organized and new results
are presented. This the case of the work performed on
fluctuations and on the effect of electron-electron (e-e)
interaction on energy relaxation (Chapter 4).

b) Part of the research is still under development and the
related material is still in the form of models and
proposals. This 1is the case of the research devoted to the
attempt to extend the Monte Carlo method to the solution of
quantum transport problems (Chapter 3).

c) Part of the material contains a review of known results
already present in the literature. We felt useful to perform
this investigation and to present it in a unified way in

order to make <clear the scenario in which our research is
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placed and the technical knowledge necessary for future
developments (Chapter 2},

In particular this report 1is organized as follows. The
formal quantum transport theory 1is reviewed in Chapter 2.
Different approaches to quantum transport such as the Master
Equation, the Generalized Langevin Equation, the Green
function method and the Wigner function method are described
and compared in their merits and shortcomings.

Chapter 3 contains the description of the attempts made
to generalize Monte Carlo methods to quantum transport
within the Liouville formulation. A method is propcsed to
solve integro-differential equations of the type obtained in
transport theories. The application of the method to the
actual equations governing the motion of electrons in the
presence of external and phonon fields is still wunder
development (Section 3.4).

The research per formed on fluctuations of carrier
velocities and energies is described 1in Chapter 4. 1In
particular Sect. 4.1 deals with the autocorrelation of
velocity fluctuations, noise and diffusion in steady-state
conditions, while Sect. 4.2 describes the same quantities in

the transient regime. The effect of carrier-carrier
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2. FORMAL THEORY OF QUANTUM TRANSPORT

2.1 Introductory Remarks

In the domain of ultrasmall structures (submicrometer)
and ultrafast times (subpicosecond) simple arquments based
on the uncertainty principle_ show that hot-electron
transport in semiconductors needs a more exact approach than
that offered by the semiclassical Boltzmann equation. Table
2.1 reports the various levels of description of
nonequilibrium statistical mechanics. Starting from the
microscopic level, identified by the Liouville von Neumann
equation for the density matrix of the whole system
(electrons plus scattering centers), the kinetic level

describing the time evolution of the electron system can be

achieved. Then, by introducing several approximations, the
semiclassical Boltzmann equation can be, for example,
obtained.

Theoretical efforts towards more exact quantum approaches
have indeed predicted new phenomena /2.1/. Among these, the
intra-collisional field effect (ICFE) and the collisional
broadening (see Table 2.2) have attracted most of the

researchers' attention.
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The former accounts for the fact that the scattering
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occurs between electron states in the presence of an RS

,if. A

electric field. The latter is correlated with the finite
- lifetime of the electron states as a result of collisions.
2 The main consequence of both effects is in the expectation
of a smoothing in the sharp peaks of the scattering rates
occurring at threshold energies, as depicted in Table 2.2.
. An illustrative description of the above effects, as
- compared with the semiclassical Boltzmann picture, 1is
offered in Figs. (2.1-3).

Within the semiclassical Boltzmann picture (see Figqg.
. (2.1)), an electron performs a classical trajectory in real
-, space between successive collisions, which are treated as .
" point-like events 1n space and time. Transitions between
-; initial k and final k' wavevectors are also point like, and
the well defined correspondence between f and E(K) enables
a straightforward calculation of the energy involved. As a
result of this picture, the transition rate P(E[ﬁ') is

proportional to an energy conserving delta function.

A
Ty
RV

In presence of ICFE the concept of "duration of a

)
LRI

collision" /2.2/ can be usefully introduced (see Fig. 2.2).

Accordingly, a collision sphere in real space, with radius r.
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< =4 iE;;gé (@ being the transferred wavevector ,f-f'l and Ti
§ the duration of the «collision) can be defined /2.3/. 1In
? this way, the carrier can gain or loose energy from the
= field during the collision, Thus, owing to the
é interference between the field and the scattering mechanisms
- and the possible gain of energy during the collision, a
i

; scattering event can occurr which in the point-like
% collision model was forbidden by the energy conservation.
; As a result of this picture, the original energy conserving
; delta function is transformed in a more complicate
- expression (see Fig. 2.2), which can be analyzed in terms of
i Fresnel integrals /2.3/.

éj Collisional broadening 1is 1linked to the manybody nature
i of the phenomena. The quasi-particle approximation must be
; released, and a complex self-energy 22,(?}6) has to be
% introduced (see Fig. 2.3). As well known /2.4/, the real
; part of Z: renormalizes the energy of the electron state,
%2 while the immaginary part, through the optical theorenm,
= gives the scattering rate. Energy and wavevector are now
é two 1independent wvariables and a spectral density, s(E,e ),
E giving the probability of finding the electron with (K, € )
; must be introduced. As a result of this picture, the
N
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original energy conserving delta function is substituted by
Lorentzian structures.

Different 1lines of approach can be pursued to establish
quantum kinetic equations able to .describe the above
phenomena /2.5/. The aim of this chapter is to present the
main results which, to the authors opinion, have recently
appeared in the literature in an attempt to evidence merits
and shortcomings of different formal theories. Our hope is
to obtain indications on approaches which are most
appropriate for numerical solutions, having in mind the
possibility of extending to a quantum mechanical framework
the traditional Monte Carlo technique /2.6/.

The chapter 1is organized as follows. Section 2.2 will
specify the physical model. Sections 2.3 to 2.6 will survey
the four main 1lines of development of the formal theory.

Applications and results will be reported in Section 2.7.
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2.2 The Model

We concentrate on a simple case, yet without any loss of
generality, which corresponds to an ensemble of independent
electrons. These electrons are under the influence of an
applied electric field E which, if not otherwise stated, is
taken as homogeneous in space and independent of time, and
they interact with a phonon Dbath. Thus the total

Hamiltonian of the system is partioned as:

H= Hy, +H. *+Hp + Hep (2.1)

where "e refers to electrons H to the electric field, H

F P

to the phonons and "e'P to the electron-phonon interaction.
As the solution of a transport problem relyes on the
calculation of average values of the observables of interest
(e.qg. density current, concentration, energy, etc.) a
prescription for such a calculation is needed. To this end
different approaches can be used and, in the following, the

leading ones will be surveyed.
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2.3 The Generalized Master Equation

2.3.1 The Generalized Master Equation

Within a Schroedinger picture, the density matrix f)(t)
of the physical system of interest is introduced. The
average value at time t of an observable O, which does not

depend explicitely on time, is given by:
= E }
0>, Th {g’( ) O (2.2)

The density matrix obeys the Liouville von Neumann equation:

é(t) = £ L op() (2.3)

;é
%
L = [H ' ] (square brackets denote commutator) being the
Liouvillian superoperator associated with H.

Following Nakaijma and Zwanzig /2.7/, irrelevant
information about the electron subsystem can be eliminated
through time independent projection operators. 1In this way,
in place of Eq.(2.3), one can write a kinetic equation for

the relevant part of the density matrix (generalized master
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equation), which can be analyzed perturbatively in terms of

-

v

- the applied field and of the electron phonon interaction.

3

) Using this procedure Pottier and Calecki /2.8-10/ have

-, . . . X .

- introduced projection operators that allow a factorization

: of the density matrix for the coupled electron phonon system

] and they have obtained an interesting quantum kinetic

N‘_ Lo '_: -_-.vﬂ
- eguation. To restore the traslational invariance of the

ﬁ electron Hamiltonian in presence of a wuniform electric

s

3 field, they used a vector potential gauge:

- 2

— A4 [ 5 -cAlt J (2.4a)
. Hy+He = L[ p e A(t)

S ~ t - ,
o A(t) = —j E(E') dt (2.4b) .
. ) SNy
", SN Rt
" LA
-« ‘b P - -,
A NAYESESE
~, RS ‘*\'-J
~ .'.t".n‘ A .‘
ﬁ where m 1is the electron mass, p the momentum operator and ARSI
g -K(t) the vector potential operator. Furthermore,

ij statistical electron operators are introduced which at t=0

are given by:

’

.'

<.

*h

o

z: Y(F,F,’O) = l—f2><El (2.5)
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where time t=0 corresponds to the switching on of the field,
and the}f:> states are the accelerated plane waves. If at t >
0 Y is evoluted by the total Hamiltonian then, to the lowest
order (second) in the electron-phonon interaction, the

>y
equation of motion for Y(K,K;t) is obtained:

T i ¢ el =t =1 ,
Y (K,K;¢) =I dt Zk‘ [P(KK; £ L)Y KK;E) -
o

_ PRE,eEIYEEE)] « F(KE)  (2.6a)

-
where the probabilities P(K,K';t,t') entering the integral

collision term are given by:

—_— .

= =2
P(KK;EE) = 2 Re {zqzm_“ | <K1Y, 1K1

=112 -;-!¢ -—_‘ ¢ " _."- A(E
« |C ()" (Nq~, Zfi’)u,ol léft.db (e (K fA(t))_

—é(\—fA(f')J*/’Zﬁ“’JH (2.6b)
? = +1 (-1) corresponding to phonon emission (absorption)




-

processes. F(K;t) represents a stochastic (Langevin) force

which is given by:

(kO = 2R [ £5 ) by {9 =,

s, = 2, = N N T . - -
[<EIAGIKS Y (K)K;0) exp [ £ At (e (K-LA(E))-¢(k-£ Aw))]-

-
]

K IIROY (KK, 0) eap [-£ [(de(e (K" £ A(e)- < (R Z(é'))}]]

O

(2.6¢c)

In contrast with the collision term, F(ﬁ;t) does not

involve the projections on the 'E>> states, but only

-

of f-diagonal electron operators. In Egs.(2.6) C(q)

characterizes the nature and strength of the electron phonon

coupling, A5= exp(ia f?), is the angular frequency of

the phonon with wavevector'a, N, is the equilibrium phonon

{

population, €1§3 the eigenvalues of the zero field

—>
Hamiltonian, and hK the canonical momentum given by:

KK = hk + eA(t) (2.64)

The electron distribution function f(?,t) in ]K'>states is
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conveniently expressed in the Heisenberg picture and results

to be:

u

4/(1'%;) Tm{?(O)Y(E,I?,-k)J (2.7)

where the trace operator acts in the whole electron phonon
space.
By assuming that the initial density matrix P(O) is

factorized in the phonon and electron parts as:

9(0) = ?ph' Yd(o) (2.7a)
one gets:

Tr {f[o) r(K,'t)} =0 (2.7b)

So the Langevin force does not contribute to the evolution
equation of the electron distribution function. Therefore,

f(f;t) obeys the high field retarded transport equation:

05 (Kit) _ Jtcw z [FOKE; ) §(K5e)-
ot o ;
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- Pk t,f'))‘(f?:’:‘)} (2.7¢) %W

»

rw ®

As merits of Eqs.(2.6): (i) a Boltzmann Langevin eguation

o’ {.l"? “'

able to describe average quantities as well as fluctuations

!
.

around average 1is obtained from first principles. (ii) An

AT

explicit microscopic expression of the random Langevin force
is provided. (iii) By including the external field in the

basis state, the intracollisional field effect is

automatically accounted for. (iv) The choice of the vector
potential gauge enables to avoid the use of the Airy

functions. (v) A periodic crystal potential (Bloch

" .‘-
e

electrons with interband scattering neglected) can be easily

as

;: introduced.

v As shortcomings: (i) Since the lowest order 1in the
]

ie electron phonon interaction is considered, collisional
ti broadening is not accounted for. (ii) The stationary state

does not correspond to the condition that one would expect

DK, L)/ 26 = 0.
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2.3.2 Comparison Between The Generalized Master Equation And

The Boltzmann Equation

To gain some physical insight, we shall compare Eq.(2.7c)

with the familiar Boltzmann equation:

03(E,E)  JE &L — 2., ZP(w;t),t(t:',e)—
O3(K,E) | E HED .
Ot L OF

—P(T?,’?')J((V,U} (2.7d)

To recover Eq.(2.7d) from Eq.(2.7c) the canonical K-vector

has to be substituted by its expression as a function of the

crystal wavevector (see Eq.(2.6d)). In doing so it is

easily verified:

9 (B0 Bb) + eF O5(BE) .
55}(1’,) 5%5( ) sy (2.7e)

s '
Then, by taking the ansatz of completed collisions ,/ ——J T e
. R
[}
, in the r.h.s. of Eq.(2.7c), and neglecting the effect of
the field during the collision, the collision term

P(E,E';t,t') recovers the wusual markovian form in the

carrier wavevector representation P(k,k').
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2.4 The Generalized Langevin Equation ;Ei ff;

2.4.1 The Generalized Langevin Equation

Within the Heisenberg picture, the average value of

<Oy, = Ta fp(0) O, (t)] (2.8)

where the time evolution of the operator OH (t) (here the
subscript H indicates the Heisenberg picture) is given by

the Heisenberg equation of motion:

Oy =

L

Ll OH(I:) (2.9)

h

Following the original idea of Mori /2.11/, Zubarev /2.12/
and Grabert /2.13/ , a decomposition procedure which makes
use of time-dependent projection operators can be

introduced. In this way a generalized Langevin equation for

the thermodinamically relevant variables (macrovariables) of

the problem can be written in place of Eq.{(2.7), which can

be analyzed perturbatively. Following this procedure, Ferry
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and coworkers /2.11-13/ have considered the set of

macrovariables:
{E,,} = {Pz, Ne,He,HP,He-PI (2.10)

where P is the total momentum of the electronic system, N

e
the number operator of electrons and the other
macrovariables are the same as in Eqg.(2.1). Then, the

equation of motion for the macrovariables is found to be:

Pl) =  exp (L) w(E) Plo)+
b .
| ds' aep (L) EMSIL[4-T ()] G (s,t) Plo) +
o

. t .
+[4-m00)] G(ot) P(o) - Jo ds'exp (cLs')W(s') G (s, t) »

« [4-1Ce)] P (o) (2.11)

Here Tr(t) is a time dependent projection operator which is

defined in terms of the chosen macrovariables and of their -~
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average values, and the operator G(s,t) is a two time Green

function given by:

G (s,t)= T. exp { L'ft du L[zf—’ﬁ(u)]} (2.12)

LY

T_ being the Dyson time ordering operator from left to
right.

The physical meaning of the terms on the r.h.s. of
Eq.(2.11) can be identified in the following way. The first
term gives the collisionless motion. The second term can be
divided into two parts, the former characterizing the
collisions and the latter leading to a fluctuating force

induced by the electron-phonon interaction and the

nonequilibrium nature of the system. The third and fourth S
terms are two additional fluctuating forces, the former :

being Mori like in nature and the latter characterizing the

fluctuations induced by the rate of <change of the
macrovariables during the transient regime. The average SR

motion of the macrovariables is determi 'ed by the equation:

CPID) =  <exp(iLt) W(E) P(0)> +
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b .
+ < Jo de'exp (L L) (s) (L [4-7(sY]Gls)t) Plo))(2.13a)

.t 0

As merits of Eqg.(2.12): (i) A generalized Langevin

LSS e LN

equation valid at high electric fields is obtained from

first principles. (ii) Separate descriptions of the motion
in absence of collisions, with collisions, and with

fluctuations are evidenced. (iii) Fluctuations under

AR N
- & e
il

transient conditions are accounted for. (iv) Generalized
balance equations can be obtained.

As shortcomings: (i) The choice of the pertinent

macrovariables is «critical but no fixed rules govern this
choice, rather one must be 1led in doing that by physical

intuition.
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2.4.2 Comparison Between The Generalized Langevin Equation
And The Classical Langevin Equation

To get some physical insight, a comparison of Eq.(2.11)
with the classical Langevin equation and with the equation
derived from first principles by Mori /2.11/, under linear
response conditions, is here reported.

The Langevin equation, phenomenologically derived in

presence of an electric field, takes the form:
P(E) = eE - 4 p(&) +R(E) (2.13b)
28

where P 1is the <classical momentum of the particle, a
relaxation time accounting for friction effects, and R(t)
the stochastic force associated with the rapid fluctuating
part of the carrier motion. A first principle justification
of Eq.(2.13b) under linear response conditions 1in the
external field was given by Mori /2.11/. By introducing a
time independent projection operator [ Mori's equation for

the guantum momentum P writes:

Pt = exp (¢LE)T I‘)(o) +
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+ [ ds exp (L&) Wi L exp[4 (A7) Ls T (4-71) Plo)+

w'y o

2

, + Ex'o[[/f—'T)Ll:] (4-T) P(o) (2.13c)

=

?2 where the three terms on the r.h.s. of Eq.(2.13c) are the

;:' quantum analogous of those in the r.h.s. of Eq.(2.13b). It
;? is worth mentioning that in the Mori equation the friction

%E term 1is described by a quite general retarded kernel.
i Furthermore, first-principle justification of the stochastic

;Q force, postulated by Langevin, is provided for the first

i} time.

E Under far from equilibrium conditions, the first three
55 terms on the r.h.s. of Eq.(2.11) are the analogous of those
’ in the r.h.s. of Eq.(2.13.c). The nonlinear condition is

&5 however responsible for the need of a time dependent

'i projection operator and for the fourth term in Eq.(2.11).
o This term 1is related to the transient which goes from the
-

i} switching on of the field, assumed to be step-like, to the

3: stationary far-from-equilibrium condition.

%

%
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2.5 The Green Function Method

2.5.1 The Green Function Method
Within a second quantized Heisenberqg picture, with creation
???,t) and annihilation Y(r,t) field operators, the

average value of Eq.(2.2) writes:

<03, = {exp [ (Hompte)] U (£) 0 4(8)]
Te [UP[*/ﬁ CHO-/JNe)]}

(2.14)

where the average is performed on the grand canonical
equilibrium ensemble (i.e. H, =H - He o G-= 1/(KyT ), Kg
being the Boltzmann constant and T, the bath temperature, /A

is the chemical potential). All the dependence of the

external field is esplicitated in the evolution operator:

.t
LI(t) = 'T,', {QXP[—é:] d’t'fd;;' ‘.I,?(,Z,'tl) (//{’;—-’,’F} HF'—']}(Z.IS)
-@

T, being the time order operator from right to left.

Following Kadanoff and Baym /2.17/, a set of real time Green

functions is introduced as:
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C—,< (nt;nt) = o ((’/T(;L',t') w(z,t)) (2.16b)

where > < indicate t ><t', respectively. The average in
Eq.(2.14) can be calculated in terms of G> and G¢ . In

particular for the density current it is:

|

- . oy
(()(%,l:)} 1 (V;z“'vri') G ("/t)”’:l’)}__ Lo(2.17)

On this basis, Wilkins and coworkers /2.18-20/ have
developed a Generalized Kadanoff-Baym (GKB) formalism which
allows to treat the external field exactly. Conceptually
the calculations split into two steps. First, the motion in
absence of <collisions, but in presence of an electric field
is treated exactly. This leads to the introduction of field
dependent Green functions G :

T,

G = G + G, He G (2.18a)
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’ where GZ a refers to retarded and advanced Green functions
. ) .
e for the free electrons. Second, the description of the
%: distribution of the particles in presence of collisions is
. given in terms of the field dependent Green functions. These
ET functions satisfy the GKB basic equations:
t. HF HF (
. G 2.18b)
. = +
74«,& E”L,Q G’-.,a >2 %9 G’n,q
- He \-1 % 2z z
. F z -
4 [(&7), %] = [Z2,67] +[27, 61
i
: < > > <
K -1’[2 é,j+ 43’2,6}(2.1&:)
-‘. ) 2
2
To have a closed set of equations one needs to know the
:' electron self energy Z:, as a functional of the Green
::'_J' function G. To complete the notation let us remind that the
- following identities are valid for G (and ZL )
:' ' [
o Gt t) = 4 [é,q(t,t) + G, ()] (2.19a)
o J
o*
+ R
b P .‘-‘.'-‘
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G (LE) =0 (E-8) [GE(EE) - G7(6E)]  (2.19m)

Gn (LE) = O(t-E)[&G7(E,E) - 6(£,6)]  (2.19)

Oit—t') is the unit step function and i, } indicates the

anticommutator. Furthermore, as all G's are double time,

double space, and real time Green functions, Egs.(2.18)

should be interpreted as matrix equations: integrals over

intermediate position and time variables are implied
throughout. In Egs.(2.18c) all external forces are denoted
by the operator "F ., whereas all scattering processes

(impurities, phonons, etc..) are collected in the self

energy. Eq.(2.19c) is a generalized gquantum kinetic
equation. The physical meaning of different terms is the
following. The left hand side gives the collisionless
evolution of the Green function. The right hand side

represents a deneralized collision integral: the commutators
describe the kinetic effects of the interaction
(renormalization of the electron eigenvalues due to the
presence of field and interaction); the anticommutators

describe the dynamical effects of the interaction (i.e. how




the collisions transfer particles from one energy-wavevector
configuration to another). A consequence of the complete
description of the interacting system is that the
quasi-particle aproximation (i.e. a one to one
correspondence between energy and wavevector) has to be
relaxed. Now energy and wavevector are two independent
variables described by a spectral density function S(;,E)
which gives the probability that the electron has the
variables (i,e).

As merits of this method: (i) The standard diagrammatic
perturbation expansion for the interaction of the electrons
with the scattering centers can be applied. Thus, collision
broadening can be included from first principles. (ii) The
intracollisional field effect is accounted for. (i11) Once
c< is determined, the most interesting average quantities
can be obtained straightforwardly.

As shortcomings: (1) To take advantage of the
perturbation expansion an immaginary time domain has to be
introduced. Therefore, an analytical continuation technique

is necessary to obtain physical results on the recal time

domain.
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2.6 The Wigner Representation

2.6.1 The Wigner Representation
The one-particle Wigner function ﬁw(ﬁ,?;t) /2.22-24/ is

defined as the Weyl transform of the density matrix P(t)

divided by h3 . In the case of a system in a pure state, fw
has the well known form given by Wigner:
4 — k]
= _ ’l'f"'U"t
¢ d- ( (2.20)
2xp ( PR (-4t

where ‘P(r,t) is the wavefunction in configuration space.
The average value of Eq.(2.2) becomes:

<O>, = > U (P.R) §(F, = t) dpdx (2.21)
where the function o(p,r) is given by the Weyl

correspondence rule:
o(F,%)= fs Tn {quaglﬁu,o[g"((rz’-ﬁ‘)-a "

*(P‘F")'{;’)]} (2.22)
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Ref./2.25/. Going

Heisenberqg picture, the

from the Green function formalism.

Wigner coordinates:

L{*éJ

and defining Wigner transform:

— teo g
P.wT) = !df[md£4XPP‘(Pn

-0 GE(REET)
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operator

von Neumann equation. A

The evolution eguation
Weyl transform of the Liouville
kinetic equation which
intracollisional field effects has been

over a second quantized formalism in the
Wigner function is found to emerge

Indeed, by introducing

from the

of £, is found by performing the

includes collisional broadening and

proposed in

(2.23)

~wt) ]~

(2.24a)




e WAL ..

LA LA A

TR,

..

RN

-

s

P

29

it is:

J('(E R;T) (iirr) fdw G<(§’Pj «,T) (2.25)
Thus the kinetic equation (2.18) is appropriate for
introducing all relevant quantum effects into f(ﬁ,;,T).
Following this procedure Barker and coworkers /2.26-28/ have
analyzed collisionless (ballistic) transport for particles
interacting with model potentials.

As merits of the Wigner representation: (i) One can take
advantage of the correspondence rule to introduce concepts,
like Wigner trajectories /2.29/, which visualize quantum
effects in a classical framework.

As shortcomings: (1) The interpretation of the Wigner

distribution should be made carefully as, by not being

necessarily positive definite, it has not a probability

meaning. In this respect a generalized Wigner distribution
- = P2 .

f(R,P; w ,T) = -i G  (R,P; W,T), which allows for an

autocorrelation function interpretation, should be more
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conveniently introduced /2.17,30,31/. In doing so, the

identity between the generalized Wigner function and the
Green function formalisms is clearly evidenced.

(ii) The stationary Wigner functions may not be obtained
from the transport equation, wunless possible initial
conditions are restricted /2.24,32/. Instead, they satisfy

an eigenvalue equation reviewed in Ref./2.33/.




’
i
i
H
4

v

o W e " ™" "¢ " T, .

.

- CAORNAACRA | U
ML ENNCR AN | i ORI PRRIE A

" W LIL I

a2
.

FJ, : 'i. .l' ." -,.-.~ ‘.' .\

2.6.2 The Wigner Function For The One-Dimensional Potential
Step

An interesting example of Wigner representation is the
one for the stationary solution of the one dimensional

potential step /2.29/:

Vi) = {o g<o

Vo Cl>’0 (2.25a)

The eigenfunctions of a particle of energy 0 { € <V, subject

to the above potential step are:

A exp (id/2) cos (kq-d/fz) g<o
¥(q) —‘——{ (2.25b)
2A exp (td/2) cos (4/2) exp ¢r9) q>o0
where
exp (vd) = :'"l:—j—)):/‘— ;o ko= If—{: Im &
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Y = ;‘i Aém (Vo -€) (2.25¢c)

and A is an arbitrary normalization constant.

By assuming that the system 1is prepared in the state
represented by Eq.(2.25b) at time t=0, the corresponding
Wigner distribution can be obtained from Eq.(2.20) applied

to the one dimensional case. The result is:

f(“bf’,o) = %%’2 exp (~2rq)Zcos Zﬁpq 4k .
_ 2 2
[(2P o) [P k) oy

2 2 2
. bim 2P9 (K- 4 )
TRt

i 9> 0

(2.254)

and
2
3((‘71P,0) = %) ZCOS(ZTPC? - 2/“_7) 3”’< B
[rte(2p-k)?]2p
]
_cos (2P9 | 2kgqg Y k i
R )fr’%%”*k)z]f{’ - e - 2ka)s
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+ 2/(3) P

x

5(41( 2

=

x k(%r)+l<z'rz)
[ree @ eyl 4r (2 k)

i{ g<0O

(2.25e)

Since the particle is 1in an energy eigenstate, Wigner
trajectories are given by equi-Wigner curves. Fig. 2.4
shows the results. The classical trajectories for the
present case (see Fig.2.4(b)) consist simply of straight
horizontal lines. An interesting feature exhibited by
Wigner trajectories shown here (see Fig.2.4(c)) is that a
non negligible portion of the trajectories penetrate through
the potential step. In general, the larger the energy of
the space-phase point approaching the potential step, the
deeper iS the penetration . Very roughly, the average
penetration can be estimated by looking at the trajectories
and their relative weights given by f. This approach thus
provides a pictorial view of quantum tunnelling. One,
however, should not attach a physical meaning to each single

trajectory because it is not observable. As can be seen
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from Fig.2.4(c) some trajectores are associated with
negative weights. This is due to the fact that the Wigner

distribution function is not positive definite. The Wigner

distribution function is essentially an auxiliary
mathematical function introduced for convenience of
discussion. For the sake of completeness, Figs.2.5-7 report

the full Wigner function in the classical phase space for

the different particle energies there indicated.




2.7 Applications

Real cases can be classified within two limiting regimes
of motion: the time reversible collisionless case and the
irreversible stationary case when a given particle undergoes
many completed collisions. The formal theories outlined in
the previous section cannot be applied "sic et simpliciter”
to the latter case. Indeed to identify a given number of
completed collisions a coarse-graining of time is required.
This problem concerns the reduction of the original
non-Markovian generalized collision integral to a Markovian
form. This procedure, which is at the basis of
irreversibility, is however associated with a 1loss of
information which is hard loevaluate = in terms of physical
approximations. This 1is the actual bottleneck of guantum
transport theory.

Using{ the Green function method as a guide line, an
interesting attempt to account for quantum effects within a
standard Monte Carlo procedure has been proposed by less and
coworkers /2.34-36/. A self-energy model for an electron
nonpolar optical-phonon scattering mechanism is introduced

as.:
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2. (€)= ngdé' fole) (2.26)
6"€‘-Vtubp-z:(é”'hubp)*dé_

Xt
LS

N

:3 where g is the coupling constant given by 'ﬁD7(2§5Lq+) (h
" being the Planck constant divided by 2T , D is the optical
i; phonon deformation constant, ? the density of the material)
. and F (€ ) the electron density of states.

a9

:ﬂ Eq.(2.26) 1is solved numerically using a density of states
3; obtained from pseudopotential calculations. The optical

theorem allows to define the scattering rate for the

o electron phonon interaction as:
. -1 2\ T - 2
o T (¢) = —(;)J.MZ(é)r— —(EJT (2.27)

which should, in principle, improve the Golden rule result.

Indeed, self-enerqgy corrections are found to reduce the
scattering rate. Furthermore, the delta functions appearing
.3 in the energy conservation terms of the Golden rule are

replaced by Lorentzian structures of the type:

l’ a2

J(%_EL.) e (2.28)
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states, and é%/f are the quasi-particle energies shifted
by the real part of the self energy. Within a Monte Carlo
procedure, Eq.(2.27) can be used for the determination of
the free flight (self-energy correction) and Eq.(2.28) for
the determination of initial and final states (collisional
broadening). The latter step is a delicate one since it is
not clear how it could be included consistently into
numerical calculations. This point needs a more careful
analysis than that presently available.

Several authors have recently speculated about the field
dependence of the transition rates in high field quantum
transport. Within a Stark ladder representation Sawaki
/2.37/ has analyzed the effect of an electric field in terms
of the self energy due to higher order terms in the elecron
phonon interaction. Herbert and coworkers /2.38,39/ have
used a time dependent perturbation theory modeling the
scattering between Airy functions. Analogous calculations
have been performed by Ziep and Keiper /2.40/. Marsh and
Inkson /2.41/ have attempted to generalize the above results
by employing WKB wavefunctions in place of Airy functions.
Overall, no definite conclusions have been reached so far,

and different approaches are still a matter of discussion

72.42/.
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‘ 2.8 Conclusions

uﬁ Recent developments on quantum transport in the
3

P; hot-electron field has been surveyed. By comparing
_ different formal approaches, the Green function method
g

.ﬁ emerges as a more powerful technique since it can take
W advantage of a diagrammatic perturbation expansion for the
- interaction of «carriers with the scattering centers. The
- comparison between theory and experiments /2.34, 35,
f‘ » . 3 . . .

N 43-45/is still far from being satisfactory, in view of the
- difficulties to estimate the reliability of the
) approximations introduced and to find crucial experiments on
iy the subject.
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KINETIC QUANTUM TRANSPORT

i) Generalized Master Equation
ii) Generalized Langevin Equation
iii) Green Function Method

iv) Wigner Distribution
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i) Band structure: the energy is given by a well
definite function of k
ii) Scattering Probability: within the golden rule
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distribution function as the probability of
finding the particle in dk about kK and dr
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NEW PHENOMENA

INTRA COLLISIONAL FIELD EFFECT

THE SCATTERING EVENT DURING A FINITE TIME, AND THE APPLIED
ELECTRIC FIELD INTERFERES WITH THE SCATTERING HAMILTONIAN

COLLISIONAL BROADENING

OWING TO SCATTERING PROCESSES THE ELECTRON STATE HAS A
FINITE LIFETIME. THEREFORE THE ENERGY WAVEVECTOR RELATIONSHIP
1S DESCRIBED BY A SPECTRAL DENSITY S(k,e). S(kK,e& ) IS THE

PROBABILITY OF FINDING THE ELECTRON WITH GIVEN (-k., €).

CONSEQUENCE

SHARP PEAKS OCCURRING AT THRESHOLD ENERGIES ARE SMOOTHED
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FIGURE CAPTIONS

Fig. 2.1: Schematic representation of the semiclassical

Boltzmann picture.

Fig. 2.2: Schematic representation of the Intra-Collision

Field Effect.

Fig. 2.3: Schematic representation of Collision Broadening.

Fig. 2.4: Representation of the Wigner trajectories for the
one-dimension potential step model (arbitrary units are
used).

{a) Profile of the potential.

(b) Classical trajectory for the case of a particle energy &
lower than the potential energy of the barrier V,.

(c) Wigner trajectories for the case € = 0.5, V, = 1.

Fig. 2.5: Plot of the Wigner function for the one dimension
potential step model in phase-space. € = 0.1; Vv, = 1 in

arbitrary units.
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- 3. MONTE CARLO SOLUTIONS OF TRANSPORT-LIKE EQUATIONS
0
>
4
N 3.1 Assumptions and limits of the traditional Monte Carlo
¥
- procedure
) The Monte Carlo method, as applied to charge transport in
: semiconductors, consists of a simulation of the motion of
.jf one or more electrons inside a crystal, subject to the

action of external forces due to applied electric and
magnetic fields and of given scattering mechanisms. The
dAuration of the carrier free flight (i.e., the time between
two successive collisions) and the scattering events
involved 1in the simulation are selected stochastically in
accordance with some given probabilities describing the

microscopic processes.

* ‘.I'l
[ A )

As a consequence, any Monte Carlo method relies on the

rats
‘s
Py

generation of a sequence of random numbers with given

14

- probability distribution.

I

When the purpose of the analysis is the investigation of a

a0t
'

e

steady-state homogeneous phenomenon, it is sufficient in

.
.

general to simulate the motion of one single electron: from

o e
e s
e

ergodicity we may assume that a sufficiently long path of

K

this sample electron will give information on the behavior
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of the entire electron gas. When, on the contrary, the
transport process under investigation is not homogeneous or
is not stationary, then it is necessary to simulate a large
number of electrons (Ensemble Monte Carlo) and follow them
in their dynamic histories in order to obtain the desired
information on the process of interest.

The electron distribution function can be obtained from a
Monte Carlo simulation by extracting the information on how
much time the simulated particle spends in each cell of a
mesh of the phase-space or, in an Ensemble Monte Carlo, by
counting the number of particles in each cell of the mesh.

It is well known that the distribution function obtained
from a Monte Carlo simulation is a solution of the Boltzmann
equation describing the same physical situation. However,
the power of the method goes beyond this characteristics. In
fact, since the scattering events are explicitely simulated
according to the scattering cross sections of the model,
fluctuations actually arise in the simulated process and
guantities 1like autocorrelation functions and noise can be
studied/3.1/.

Such a situation 1is so favorable for the analysis of

transport problems that, in the last two decades, most of
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the physical systems of interest have been analysed and
understood within the limits of validity of the
semiclassical theory of transport.
Therefore, a need is now felt to overcome these limits and
try to extend the method of Monte Carlo simulation to
include quantum effects not accounted for in the traditional
approach.
Such a need is further justified, on practical grounds, by
the present state of VLSI technology which now allows the
fabrication of devices so small that quantum effects may
become appreciable.
Quantum effects are a consequence of small dimensions not
only because of the well known size effects, but also
because the applied voltages (which cannot be decreased
below certain 1limits) at such distances imply very high
fields, at which quantum phenomena may become important

In the traditional semiclassical approach, collisions are
treated as pointlike events 1in both space and time. 1In
fact, a fully quantum mechanical treatment should account
for the interference between applied and scattering fields
(intracollisional field effects), the finite lifetime of the

electron states (collisional broadening), and the

| 1':1‘ "1_'r"‘ (i

.
2




LT B P P o o o wmm—— e = = = e

, » ¥ "
-'I‘I.C'

S IR

SRy e

25 .

!

Rl

LEAEA IO

T

(ARAOMOME}

57

possibility of multiple collisions,

Within this picture, energy conservation is not a feature
of each of each scattering event, and the simple one to one
correspondence between energy and wavevector will Dbe
substituted by a probability distribution Pk (& ).
Furthermore, at any new collision the assumption is made of
perfect energy conservation of the previous collision, which
is not exact when two scattering events happen gquite near to
each other. Collision broadening is thus neglected.

Another feature of the traditional approach which we do not
feel happy about 1is the wuse of first order perturbation
theory, that 1is the wuse of the Fermi golden rule, for the
transition probabilities.

The situation then callsA for a search of new techniques
which can allow us to treat transport problems with a fully

quantum approach, free from the above limitations.
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3.2 Monte Carlo solution of a set of algebric equations

AP IO AR 15 AN

Let us consider a system of n linear algebric equations of

“ A

e

the type

Py

~o R

b, 8

L)

X, = £, + A‘J x}- , U= lgn (3.1)

where gé are the unknowns, ﬁé a known set of numbers and Aﬂ

a matrix of known coefficients, and summation over repeated

indices is implied.
If Eq.(3.1) is iteratively substituted into itself, we

obtain the following expansion in series of A:

X, = f+ + Qg (3-+A. xk) (3.2)

4J. 4} .y' ‘7"1
+ oo
If
m
max Egjl Qq_l <1 (3.3)
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the series in Eq.(3.2) converges/3.2/.

It may be interesting to put Eq.(3.2) in the form
(I-A)x = f (3.4)

or
x = (1-A)" £ (3.5)

In this way we recognize the series expansion in Eq.(3.2) as

the harmonic series expansion of the resolvant operator in

Eq.(3.5):

-1 Q2
(I-A) = 1+A+A +... (3.6)

A Monte Carlo procedure has been developed by Von Neumann
and Ulam to solve the system in Eq.{(3.1l), which proceeds as
follows/3.2/.

Let us consider a set of n "states" or "boxes" labelled 1,
2, ...n, and 1let a "simulative pafticle" be positioned at
the beginning of the simulation in box i. Let then simulate

a terminating random walk with fixed but arbitrary
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transition probabilities

Rq ) i,j=1,...n (3.7)

from state i to state j. Q% must satisfy the following

conditions:

pi‘j>0 (>0 if Ay $0)
— .
24 Rg( 1 i=l,... n (3.8)
&
For each state 1 the random walk has a terminating

probability given by
p, = 1-2y p. (3.9)
v ¢

Any random walk qr may be represented by the set of the

successive visited states

N o= Gyedyrenend hip) ' (3.10)
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For a given random walk represented by A in Eq.(3.10) let

us compute the quantity

A

X(§) = Vg ):”:

(3.11)

where

(3.12)
. or
- vi=l  if =(io ) (3.13)

The expression '§\=(io ) in the last equation means that the

Rl S,
hady RPN

random walk has terminated before any transition took place.

The expectation value of X{( f}) for random walks starting

i from iy is given by ’T;:f;
x(f/i0) =25 PO{/10)X({/iy) (3.14)
v where P( {/iy) is the probability of having the random walk §~ o f'
- , given i, as starting state. Thus 5:' o
s s
'f,. -

SRR
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3
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(A7

<X (fio) ) - l; 2

e
1[:, * o

o'y
¢

{
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chi{ Z——l A:m Amz ‘&

§+ Af*‘ Asz o= X

where we have taken into account Eg.(3.2).

Therefore the following Monte Carlo procedure can be applied

in order to solve the system in Eq.(3.1): a given unknown x,

is chosen and many random walks are performed starting from
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the state iy , according to the transition and terminating
probabilities given in Eqgs.(3.7-9). For each random walk,
the quantity X(‘K‘)in Eq.(3.11) is evaluated. Its average
value over the random walks is a correct estimator for Xp

Variations of this method can be found in the

literature/3.2/.
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. 3.3 Generalization of the procedure to an
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integro-differential equation

Let us consider an integro-differential equation of the type

b
Q]((x,t) . 9£(><.t)+ /H(x,x‘,t){(x’,t)dx' (3.16)
X
a

where v 1is a constant and H(x,x',t) is a known function;

f(x,t) 1is the unknown function defined in the interval

The interest in considering this equation is based on the
fact that transport equations have often this form. In
particular the Boltzman Equation can be reduced to the form
of EqQ.(3.16) with H <closely related to the scattering
probabilities and v proportional to the applied electric
field.

In what follows we shall describe a numerical procedure
which generalizes the method shown in the previous section
to find a steady state solution, if it exists, of an
equation of the type of Eq.(3.16).

From Eq.(3.16) we may obtain
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(3.17)

R

v

b
fookedt)- foub) - T ?gf::ft_) + / H ) SE ft )
a

'r{‘- Y

e B
PR

or

Yy b

- b
(e, b8k = L5, E) + / H 3, E)BE fod ) (3.10)
J

X -\' .-.‘ :‘. DR

.

where x=vgt.

.
S

Let wus consider a mesh of the interval (a,b) and let ﬁi(t)

Catd
b k'..\ LA

be the value of f(x,t) in a representative value of x in the
i-th interval. If x is in cell i, let x-5§ be in cell i'.

Then our equation reduces to

et
o

*
»

3 £ (e+dE) = £(t)+ (t) (3.19)

A‘J f}
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where

A = H(xi,x',t)gtdx' (3.20)

cell §

If Eq.(3.16) has an asymptotic solution independent of t,

for large enough t Eq.(3.19) reduces to

f. =f€ +A ;. £ (3.21)

This equation is not exactly of the type desired (Eq.(3.21))
since fé‘ is not known. However an iterative procedure can
be attempted which starts with a trial function fld ; If fp)
is inserted in the first term of the r.h.s. of Eq.(3.21),

then with the Monte Carlo procedure indicated above a

. 1) ) )
solution £ can be found, solution of the equation

@ (@
f{: -f‘-|+ A";}j (3.22)
. (1) .
The process can be repeated with f as known term, to find

. : 2) . .
the next iteration f , and so on until convergence 1s
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reached.

We have tested the above procedure for the case of

- ("),
2 0 (6thx%hy4ﬂ+lww

H{x,x',t) =
(X'(Jt-r'l)

(3.23)

™

where x 1is wvariable in the whole real axis. 1In this case

the equation has the solution, nomalized to unity,

X,k
f(x,t) = }W_ e (3(@+1\) (3.24)

with asymptotic solution given by

4 -x*
f(x,t) = [ X p (3.25)

a1
The Monte Carlo procedure described above has been applied
and the results are reported in Fig.3.1l. Here the initial
trial functionand the function obtained after a large number

of random walks are shown together with the exact solution

of the equation.
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3.4 Application to a quantum transport equation ‘vv(‘%;_
o N
g- Let us consider an ensemble of N electrons in a crystal in RGN
2 o
the presence of a homogeneous static electric field E and a ¢ bl
'Q perturbation potential given by a superposition of plane
> . ,
3 waves with different wave vectors and equal frequency.
: Vit)- S A(1x-40t) ¢ _ifox- wik)
- ) 2 A(('V + A? 0 (3.26)
: q
This potential may be considered a semiclassical
‘f representation of an optical phonon field.
‘\_'
-~
‘: In what follows we shall adopt a density matrix formalism.
. The one-electron wave functions can be expanded in a series
ﬂ: of Bloch states as
-:, A,
Q) . ti) E7
5 11)— (F.t) = Ek y C [L,(;) M/k(F) e, (3.27)
2
- where i indicates the i-th electron.

The density matrix § is defined as




L - S

(i

N
e

4
hj 1=

? (L: L': &) = )('C.H C{LH?U > (3.28)

? can now be considered as an operator whose matrix
elements in ‘the base of the Bloch states are given by

Eq.(3.28). The equation of motion for ?’ is

ik g{ - [u,ﬂ

(3.29)
In the base of Bloch states this equation becomes
/‘bt %i(L.LI‘{:) ) %J H(L'U‘E)Z(U‘L"E)—X(LL'%) (3.30)

L’{(USLZE)

If we include the time dependence in the basis set of
functions, we may write, in this new interaction

representation
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Q) (tr U’”)
’1{7 (Tp) = Lb(tt)/l/’ (¥) & (3.31)

with

1 &)ké

b (u)v ckb) e (3.32)

The density matrix is now written as

‘1(h&fa)ﬂ)t

o (kLY - NLZJ E”(rt E (kt) f(zte)e, (3.33)

B substituting as given by this expression in Eq.(3.30)
Y

we obtain
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~£(wb-(,«)¢)(:
> H(Lmt) U-(E‘/Unt)e/ — a(kl:'t>= (3.34)

(Wi W)k
e H (LLE)

g
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where

H(LL'E)=/JFMf(;)@ Hupe - o

i 4 ke 7 gL S
: Fk@e ¢ Huw®e o ). (3.35)
Ei “(w”‘d” —‘&UKJJp)t O
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Now dd)(k,k',t) are the matrix elements of H between the time

e rTy

dependent Bloch states. For simplicity these will be
approximated, in what follows, by plane waves, thus
{} neglecting the overlap integrals in the matrix elements.

By inserting Eq.(3.35) into Eq.(3.34), we have

4k (9(1(”&!;)) é/—l {(l)l. wn)k ' ’l[u)x e )L—
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Cilweghe T ilwdaont
m&-ult) ¢ 7/ -0, (IL"U&)B / (3.36)
l "’L./(&)t- k.")l'/ ~i /&2%—&)”‘ ‘: (3.36)
- o (b k l:\) ¢ 9)/ %[U'UE) 0 >
oo (ke't) Iy |
oL + wf,"«)&)&(kl;k) = 5_’ %[Lk“(() Q(k"ﬁ‘b) -

- o, (kk'E) %(U’L‘I:)}

The total hamiltonian is given by the sum of three terms:

unperturbed hamiltonian for an electron in the perfect

oF

(y]
crystal;
QLE = hamiltonian due to the presence of the external field,
here assumed uniform and constant;
U{S = hamiltonian due to the interaction with the oscillating

(phonon) field given by Eqg.(3.26).

For the matrix elements we have
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W (LL't) - ( - ) e () %(k-U) (3.38)

—l(ffr Wet) 1[k r- b.)u(:)
T% (LL‘{;) -L) % e eEx dP =

4(&&'Wﬂ)t —i/tﬁ)?
= e eEij/L—g_irrf@ dJF

a (wb'wdl)l'/'
o eE < (L)

t

- (Er wet) 1 (E'F - wotk) /L < (gn-wk) > )

U«)S(ku J/ 0 . ( ﬁ /4? ¢ v s
v (Wewe-WNE [ e ) o g
Z—J{Ac] & ) 1y ( E En]) \r“ 24 :; e/[ W Lt 4 L .)E
q (bE'4)7 . S
z?. J o!f- - e
e -1, )k | % IAUz &L,+&h)& - .

_Z,;A 7 (W-Wer-1),) §(LL+9>+2,_,A7€, f/k-ls'm):

4 (We- ' = (o) £ -+ o)k
AU-ILC +At[,_ 4[01 “

(3.40)

In order to consider V as representative of the phonon field

s p e ele A Nl
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I.'i'"

L lege




we choose

(3.41)

where ?) is the density of the crystal,\/ its volume, Ei the
deformation potential coupling constant, and Nﬂ the phonon
occupation number.

Furthermore, in the second term, corresponding to the
emission of phonons N? must be substituted by N,.i + 1, in el

order to take into account spontaneous emission. Therefore

[ U (W= W+ Wo
Y, (D) - /@f«:ﬁgp‘ /Abfi\m}e,(w v )t

“i (0y - W -y ) £
- \’Mgﬂ e )

(3.42)

By substituting the matrix elements calculated above into

Eq.(3.37) for the dynamics of the density matrics, we obtain

|£_ 4 )
Da,g(ék Vo B (T 0) otk - o (5.-5)E o, (L)
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where k = eE/f and n;=$5a@.

This equation can be transformed into

a (688 = a (-5 ELsk, £5E)4
-k (v )ESE- a (ket)

+/7 4 Et [AE[SE {\//‘ i \
" —_— cel - A}f’v~a )
" Vi i 3 by >a(“”

-{qu-'-- ) W) Q (LL"¢)

which can be reduced to the same form of Eq.(3.1).

(3.43)

(3.44)
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the

numerical

techniques described

earlier to Eq.(3.44) is currently under development.
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FIGURE CAPTIONS
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Fig.3.1l:Exact solution (dotted line) and numerical solution
{continuous line) as obtained following the proce-

.3 dure described in Sect.3.3, for uniform initial

trial function (dashed line).
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4.FLUCTUATIONS OF CARRIER VELOCITY AND ENERGY IN STATIONARY

AND TRANSIENT REGIMES

In recent times the analysis of velocity fluctuations of
charge carriers 1in semiconductors in presence of high
external electric fields has received renewed
attention/4.1-4.12/. Modern microelectronics technology, in
fact, has reached the submicron scale of miniaturization, at
which a deeper insight into the physics of transport
phenomena is required/4.13/,énd fluctuations come to play an
increasing role in the design and characterization of a
device. Furthermore, a theoretical analysis of fluctuations
at sufficiently high frequencies can yield significant
information on the physical properties of the scattering
sources present in the material under consideration and,
more generally, on the microscopic interpretation of its
transport properties,

Several papers have appeared on this subject in recent
years. However no rigorous account has yet been given of
the different sources for such fluctuations /4.14/ and very
few results have been reported on transient
fluctuations/4.15/.

We have performed a unified analysis of diffusion and
noise problems obtained by means of the wvelocity
autocorrelation function. This method <can be used to

describe both steady state (Sect.4.1) and transient
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(Sect.4.2) phenomena, and also to analyze the different
contributions to the diffusivity due to the different
physical sources of fluctuations which arise in the presence
of an applied electric field.

Results have been obtained with a Monte Carlo procedure
for covalent (silicon) and polar (gallium arsenide)
materials.

Furthermore, Monte Carlo calculations of hot-electron
phenomena usually do not take into account interaction among
carriers. On the other hand , a strong dependence of energy
relaxation time on carrier concentration is observed at
rather low carrier concentrations and it is thoughl to be due
to carrier-carrier interaction.

An analysis of the influence of e-e scattering on the
energy relaxation time is presented (Sect.4.3.1) through the
energy autocorrelation function obtained from a Monte Carlo
procedure which includes e-e interaction
(Sect.4.3.2). Results will be shown for p-Ge and compared

with experimental data (Sect.4.3.3).

4.1 Autocorrelation of velocity fluctuations, noise, and

diffusion in steady-state conditions

4.1.1 Analysis of velocity fluctuations
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\ Let us consider a homogeneous ensemble of carriers
E. subject to a uniform static electric field.E in steady-state
? conditions. Diffusion and noise are related to the
. stochastic wvelocity fluctuations{?(t) of each particle over
:? the drift vaiue 3& . The mathematical quantity which
3} describes the common origin of diffusion and noise is the

autocorrelation function of velocity fluctuations, which, in

:; one dimension, is defined as

> C (k) = <§U(t‘)'iﬂi(€-t)> , ()

where the brackets indicate ensemble average, and the mean
value, in steady- state conditions, is independent of t°'.
This quantity carries the information on how 1large these

fluctuations are and how they decay in time.

C(t) is related to the diffusion coefficient D through

0fale
l'l"'l

the equation/4.16/:

i A B

DEE _/c(e)dt (1:2)

Thus D can be determined by Egq.(4.2) from the evaluation of
C(t). It is worth noting that the calculation of C(t) is of

interest in itself, because its analysis, as we shall see,

A
a'atnw

o
el

yields a 1lot of physical information on the time evolution

9 of the dynamic system under investigation.
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Another important relation exists between the diffusion

coefficient and the noise spectrum of velocity fluctuations,

2

T
1wk
50,('4)) = Min “i‘< /8\)[&)6 dt (4.3)

defined as

t>ro L

Using the Wiener-Kintchine theorem/ilt/the well known relation
9 0) |
D = 3 Oul (4.4)

is found. In order to describe the different origins
of the various terms which can contribute to the diffusion
process of carriers in semiconductors we shall consider a
many-valley semiconductor with two types of valleys (this is
the case, for example, of n-Si with the external field along
a 198y direction).

Let us consider an electron that, at time t, 1is in a
valley of type V(t) (V(it)=1 or 2) with energy
between & and &tAE . We may then define:

zL=drift velocity,i.e. mean velocity of all
electrons;
vv(t) =valley drift velocity,i.e. mean velocity of

all electrons in valley V(t);

\Y (t)=mean velocity of electrons in valley V with

ev
energy between & and CtAC .
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The instantaneous velocity of each electron v(t) can then
be written as the drift velocity plus a number of

fluctuating terms/4.12/:

"W

4+ (W04 [+ [ 0- 0 ]+
t [’\T(t)" Vev (ﬂ] 2

Arik)

M+ 00, )+ BV (D v o0 (45)

where ‘va is the fluctuation associated with the drift
velocity of the wvalley in which the electron is at time
t, ‘3%5 is the fluctuation associated with the electron
energy, and BVE is the fluctuation associated with the
electron momentum.

By using the expression in Eq.(4.1) the steady-state

autocorrelation function becomes:
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2 and i,j=V, € ,k. It has sometimes been implicitly assumed
;E in the 1literature that the total noise due to velocity
':S fluctuations is given by the sum of the three "diagonal"
e, contributions Céb in Eq.(4.6), at the origin of intervalley
% (Cy)/4.18,4.19/convective  (Cee)/4.20/,  and  thermal
/ﬁ: (CLk)/4.2ﬂ/ noise, respectively. This restrictive
- assumption is correct only when the relaxation times of the
i? various = fluctuating terms have well differentiated values
5; .50 that in calculating the "off-diagonal " terms one of
. the two fluctuations can be assumed as constant , while the

other one averages to zero, In general,

5‘ however ,off-diagonal  terms Cg also contribute to the
- autocorrelation function and therefore to diffusion and
;? noise. As an example, Ci. (t) is the contribution to the
:; autocorrelation of velocity fluctuations associated with
A correlations of momentum and energy fluctuations.
42' Due to the linearity of Egs.(4.2) and (4.4) we can also

associate specific terms in the autocorrelation function
with corresponding terms in the diffusion constant and in

o noise, thus making explicit their physical origins.

4.1.2 The Monte Carlo Procedure
We use for the theoretical calculations a standard Monte

Carlo procedure.

— The evaluation of the autocorrelation function of 6v




in steady-state conditions can be easily performed within
the Monte Carlo simulation as follows. Let T be the time
interval in which the autocorrelation function is to be
sampled, which 1is wusually taken as larger than the
autocorrelation time (i.e. such that C(t)~N g for t=T).
Then T is divided into a number M of intervals of
duration AT=T/M in order to determine C(t) at the times

o AT, IAT ,..., MAT =T" .

/

During the simulation, the wvelocity of the sampled
particle is recorded at the time values i-AQT, i=8,1,2,...

When i becomes greater than M, the products
V(iNT) « V(AT ), j=0,4.M  (45)

are evaluated for each i and j. Products corresponding to
the same value of j are averaged over the simulation, thus

obtaining

/V(t) /v(ﬁql\T) : C(fAT)*/U; (4:9)

(bar indicates time average), since in steady-state
conditions the time average is equivalent to the ensemble

average.
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The noise spectrum can be easily obtained as a Fourier
transform of C(t)/4.2/.
In order to determine the diffusion coefficient by

means of a Monte Carlo simulation, the second central moment

2 i
M) = < | Z(E)- L2 | > (4:10)

can be evaluated as a function of the simulation time ¢t,
where the average is performed over many different
particles. For times larger than the initial transient, the
time dependence of M(t) becomes linear and vyields fhe

diffusion coefficient as

N A d - Mk .
D'Q, o M(E) (1)

D can also be obtained from a numerical evaluation of the
integral in Eq:(4.2) once C(t) has been obtained.

The physical models used in the calculations for Si and
GaAs are those reported by Brunetti et al./4.21/ and

Ruch/4.22/, respectively.

4.1.3 Results
Results have been obtained both for covalent (silicon
case) and polar (GaAs case) materials. In order to simplify

the complexity of the interpretation of these results let us
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- analyse the two cases separately,

?g Results for electrons in Si-have been obtained with an

'% applied electric field E=1¢kV/cm and a crystal temperature

i of 77 K. The simplest physical situation to discuss is

EE that with the valleys symmetrically oriented with respect to

;; the direction of the external field (E)/(lll)).

: Figs.4.1 and 4.2 report the autocorrelation function of hgﬁ;:

velocity fluctuations and the different contributions,

i& respectively, as analyzed in Sect.4.1.1, for the case .Ey/
fi {111 . Within this analysis it is seen that a negative part
%; in the total autocorrelation function is present, which |is
’i: mostly due to the thermal contribution. Furthermore the

.

) off-diagonal term QEK.(t) of the autocorrelation function,
1#: . as defined in Eq.(4.6), also gives an appreciable
l;g contribution to the negative part, largely compensated by a

:‘ positive contribution of Cic. The particular form of these
;é contributions is related to the energy dependence of the
%Z scattering mechanisms. In fact if , at a given time t, a

T% positive fluctuation of electron momentum occurs, at a later i!ii:
; time, due to the 1larger absorbed power, a positive

S; fluctuation of energy is 1likely to occur; this,in turn, -

: leads to an increase in the scattering efficiency, so there Q;;p'
& is a greater probability that a scattering will occur. "
é: Since each scattering is momentum randomizing, at larger

7

times negative fluctuations of momentum will follow.
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In order to connect this sequence of events to the
shapes of the different terms Cﬂ} (t), we need to relate
energy fluctuations 66 to velocity fluctuations éve .

Fig.4.3 shows Vey as a function of energy in Si for the
same temperature and field considered above. It can be seen
here that Vev is an increasing function of € , so that a
positive € will correspond to a positive Bﬂ; .

By collecting the above considerations, it can be

understood why Cye is positive,C¢y, is negative, and Cp .

is positive at smaller t and negative at larger t, with
a minimum which is reached at times greater than the extrema
of Cy. and C,, (see Fig.4.2). In this case therefore
the fact that the scatterirg probability is an increasing
function of energy yields a negative contribution to
longitudinal diffusivity through a negative part in CLy and
not through a negative convective contribution C,. , which
exibit a regular behaviour with a small negative part.
Other off-diagonal terms are, in this case, much smaller.

Figs.4.1 and 4.4 report the autocorrelation function of
velocity fluctuations and its different contributions,
respectively, as analyzed in Sect.4.1.1 for E// <160> . In
this case the different wvalleys have non- equivalent
orientations with respect to the field direction, and
therefore different components of the drift velocity along

. . > . .
the direction of E, so that the phenomenon of longitudinal
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intervalley diffusion occurs/4.21/. The intervalley
contribution to C(t) is responsible for the long tail of the
total autocorrelation function, absent for the case E}/(lll>
(see Fig.4.1), since the intervalley transition time is the
largest of the characteristic times of the process under
investigation in these conditions of field and temperature.
If we evaluate the integral of the intervalley contribution
Cw,we find for the intervalley diffusion coefficient the
value D =240AL/Sec ;which is very close to the difference Dﬁo
-qﬁ=21cm2/sec /4.21/.

The conclusion that such a difference is due to
intervalley fluctuations 1is confirmed by the observation
that the thermal and convective contributions to the total
autocorrelation function are very similar for the two field
orientations (see Figs{2 andjA).

In a transverse direction,for E}/(lﬂﬂ> velocity
fluctuations are due only to thermal fluctuations (Y/=Zv=gﬂ
=0); their autocorrelation 1is always positive, since no
energy transfer 1is associated with velocity fluctuations.
For this reason D, is always 1larger than Dé , when the
scattering efficiency is an increasing function of & .

Fig.4.5 shows the noise spectral density Sy (w) for
the case of E}/(lﬂﬂ)discussed above. Again, the peculiar
shape of the total Sﬂ,(u)) can be understood from the

analysis of the partial contributions, also shown in
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Fig.4.5. The white-noise value of the total spectrum,

2
corresponding to a diffusion coefficient of 41 cm/sec , is

strongly influenced by the iarge intervalley contribution (D,

2

=31 com” /sec ). This term shows the most rapid decrease at
increasing frequencies due to the largest relaxation time of
the 1intervalley velocity fluctuations. The thermal term
gives ,a relatively small contribution(qkf14 cmz/sec) to the
white-noise 1level, as an effect of the cancellation of the
negative and positive parts of Clyr and has a bump, due to
the strong oscillation of qi. The convective contribution,
with a white-noise level corresponding to 26=10cma'/sec, is
present with a monotonically decreasing behaviour, and is
always positive. The off-diagonal terms S o, and Sg} have
similar shapes of opposite signs; their cumulative
contribution, which is relatively small, is negative at 1low
frequencies, corresponding to a negative contribution to
diffusivity, and becomes positive at high frequencies.

The total noise spectrum corresponding to the sum of the
different terms seen above shows a non-Lorentian behaviour
with a fast initial decrease due to the decrease of the
intervalley term followed by a bump due to the thermal
contribution and by the final A/LOZ dependence. Due
to the high frequencies 1involved, it may be difficult to
detect experimentally the maximum of sv(w) at 800 Glz. In

experiments however , it must be taken into account that an
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initial decrease of %V«g) after a white-noise level does not
indicate the cut-off of velocity fluctuations, but rather
yields information on the intervalley relaxation time.
Results consistent with the above interpretation have
been obtained with calculations perfofmed at other
temperatures and fields. In particular, for T=77 K and
E=208 V/cm along a{1¢6Yand a<11£7directions, agreement has

been found with experimental data of Bareikis /4.23/,as

shown in Fig.4.6.

Results for electrons in GaAs have been obtained with
an applied electric field E=18kVv/cm and a crystal
temperature of 300 K.

Fig.4.7-a reports the autocorrelation function of
velocity fluctuations together with its three diagonal
terms. The thermal fluctuations at the chosen field
strength are much higher than for the case of Si, owing to
the higher electron energy.

Fig.4.7-b reports the off-diagonal terms. They are all
of the same order of magnitude, but much smaller than the
thermal contribution, so that in this part of the figure a
different vertical scale has been used.

The interpretation of the diagonal terms, as well as of
the off-diagonal terms %kand Cye , is similar to that given

for the case of Si. Fig.4.8 shows, in fact, that Ve is a
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monotonous function of energy also for the case of GaAs.
This figure also shows two interesting features. By
increasing the field above threshold for negative
differential mobility, the whole vg curve (not only its
high-energy part) is reduced, due to the randomizing effect
of intervalley scattering. The effect is related to the
intervalley collisions with the final '? in the central
valley with direction opposite to the electric force/4.24/.
Furthermore, at energies above threshold for intervalley
scattering, the curve Ve increases more sharply, because
electrons enter this region of energy mainly because of
acceleration due to the field.

In order to discuss the results for the other
off-diagonal terms, we shall refer to the succession of
electron states described in Ref.4,24. Electrons in the
upper valley will eventually be scattered in the negative
half Z—space of the lower valley into a state with high
energy; as an effect of the field, their energy will first
decrease, and then increase until the electron will again be
scattered into the upper valley, in this way beginning a new
cycle. Therefore, when an electron is in the "slow" upper
valley ( 5vv ¢ B8), a positive fluctuation of energy will
most probably follow, corresponding to a positive&%e, with a
negative K in the central valley. This is the main reason

for having CVQ negative and CVL. positive, When 5? (and

v d R
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consequentlygh) is positive, a large energy will follow (&%)
@) and the electron will 1lie predominantly in the slow
valley ( $VV<0) until its energy has been decreased by
successive intervalley scatterings; when, instead, gt is
negative ( %vk<ﬂ), then the energy will be decreased by the
field action (S%Aﬂ) and the electron will lie in the “fast"
valley ( 5\9>ﬂ) until it again reaches an energy comparable
with that necessary to emit an intervalley phonon. This
explains why C[V and C.,, are negative.

Fig.4.9 shows the spectral densities calculated from
the autocorrelation functions shown in Fig.4.7. Sve and
are smaller than the other contributions and have not
been reported for the sake of clarity.

As regards the noise spectrum, at high frequencies the
thermal contribution Su is dominant, while for the white
noise, owing to the large cancellation of the positive and

negative part of Cﬂf %kbecomes comparable with other terms. g

4.2 Transient Autocorrelation of Velocity Fluctuations and

Diffusion

4.2.1 Transient correlations

The diffusion process of a carrier ensemble comes from
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the particle space-velocity correlations which arise during
the evolution in time of the system.

Starting from an initial condition in which the particle
positions and velocities are totally uncorrelated, the
process which occurs during the time necessary for setting
up the correlations will be defined as the correlation
transient. Furthermore, when a high electric field |is
applied at a certain time to the electron ensemble, the
transport process itself must pass through a transient
regime which is necessary for attaining the stationary
distribution f(?) in Z-space. This process will be called
transport transient.

In what follows we shall discuss how these two
different transients can be analysed separately, but
simultaneously, and how their effects influence the
transient of the diffusivity of the electron ensemble.

The definition of the transient diffusion coefficient
has been given by a generalization of Eq.(4.11)'to arbitrary

small times /4.25-4.27/:

2
DO -+ & (20- ) 2 (h12)

where z(t) is the space position of a carrier at time t
-
along the z-direction parallel to V.

This generalization can be put in an equivalent form in




terms of the autocorrelation function, which is easily

interpretable from a physical point of view. By using

E
20) - Z6)+ / Wb de f013)

in Eq.(4.12)we have: . E

('5,; )y + 2 { 22(0) Jo’l)/t')c”:' >t

0

fd(: Jd{;" l 0’0’ (€). 0’17 (£") > \

Dly- 4

<Bz(o) Smt )D + /dé o0 Sue)>  (4lh)

If there is no correlation between the initial positions and

. g
. ;

velocities of the particles, Eq.(4.14) becomes:

,/JZ C, () /h.15)

[

DIk

with

Ce (2)

1

5E)- v (E-2)>, ol TCL (f4k)

where we have put in Eq.(4.15): g=t'-t.. Eq.(4.15) reduces
to Eq.(4.2) in steady- state conditions (t»>g@).
By comparison of these two expressions, we see that in

the present case: (i) the integration interval does not
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extend to +08¢ but toward the past, back only as far as the

initial conditions; this finite integration brings about the

T

effect of correlation transient;

ﬁ ’ (ii) the autocorrelation function to be integrated in the
< transient analysis (Eq.4.16) is not time independent; it is
- given by the specific'ensemble average at a particular time,
and its shape provides information about the transport

transient.

4.2.2 The Monte Carlo Procedure

The transient autocorrelation function Ct (&) ,also
called two-time autocorrelation function /4.15/ can be
calculated with a Monte Carlo procedure through the
simulation of the dynamics of an ensemble ofAelectrons. At
fixed times @,At, 2At,...; the direct calculation of the
velocity fluctuations is performed with respect to the mean
value, calculated at the same time over the carrier
ensemble. The products v (iAt)-v(jAt), j=0,1,...,i are then
averaged over the ensemble and they give i+l values of the
transient autocorrelation function at the time t=iAt.

The analysis of the wvarious contributions to the
autocorrelation function (see Eq.(4.6)), according to the
separation in Eq.(4.5), can also be obtained for the
transient case in a similar way.

The present analysis holds also if the field Iis
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switched on at a time Eglarger than the time t=@ of the
initial conditions /4.28/. 1In this case the effect of the
transport transient is separated in time from the initial
correlation transient of the zero-field diffusion (see the

next section).

4.2.3 Results

As application of the general theory outlined in the
previous section, we now discuss the results obtained for
few special examples which contain the significant features
of most of the interesting cases. All the results have been
obtained with the Monte Carlo technique for electrons in Si
with the silicon model referenced to in the previous
section.

Fig.4.18 presents results for the second central
moment, the transient longitudinal diffusion coefficient,
obtained with Eq.(4.12), and the mean velocity, as functions
of time for electrons in Si with Ea” =10 kV/cm. The
following initial conditions have been taken: electrons are
randomly situated in one of the six valleys with equal
probability; the velocities are chosen according to an
equilibrium Maxwellian distribution, and the electrons are
all positioned at r=0.

Fig.4.10 shows that the second central moment first

increases quadratically with time, as predicted by ballistic
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behaviour. At intermediate times (0.2-1.psec) an irregular
E behaviour 1is exibited by the diffusivity: a tendency to
N level off, followed by an overshoot (t%@.8 psec). Then, at
sufficiently long times, the second central moment shows the
. linear dependence on time with the slope corresponding to
the steady-state diffusion. |
This behaviour is due essentially to the combined
- action of the acceleration impressed by the external field
v and of the dissipation of energy and momentum associated
with intervalley scattering. At the very beginning the
field accelerates the electrqn gas, and all the particles
move toward the region of energy where intervally emission
becomes possible. 1In thié interval of time (#-0.2 psec) we
have the ballistic regime, in which both mean velocity and
diffusivity increase linearly with time (see Figs.4.19—c and
b) . The fastest electrons will then undergo intervalley
N scattering, becoming in this way very slow ; as a
consequence mean'velocity and diffusivity tend to level off
(t?@.5 psec). Later, as an effect of the scattering, we
have a separation between fast electrons (those which have
) not yet undergone scattering) and slow electrons (which did

undergo scattering), which causes a fast increase in the

diffusivity (see Fig.4.10-b) and a decrease in the mean

O

velocity (see Fig.4.18-c) after its maximum value (t%p.8

'
%

-

psec). Finally, due to the randomness of the scattering,
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the randomized steady distribution of velocities will be set f:.;;.
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up, and both (v> and D reach the steady-state value; the »pﬁii%
H'\.". "
: . Ay ‘
steady diffusivity is lower than the overshoot value because PN ’
"-"‘:':':",v ¢
each particle becomes, in steady-state EIL

3 ¥

conditions,alternatively slow and fast, with a reduction of
the spreading rate at long times,as indicated by the
negative part in the stationary autocorrelation function.

As previously noticed, the results on transient
diffusion can be analysed and understood in terms of the
transient autocorrelation function Cl:(Cr). The examples
presented below (Figs.4.11 and 4.12) refer to the silicon
case with E=10 kvV/cm. However here the field has been
chosen along a {100 direction in order to add in the
discussion the effect of the intervalley contribution to the
diffusivity.

Fig.4.11 shows the transient autocorrelation function,
as a function of g at wvarious times t; the same initial
conditions used in Fig...184 have been taken. Each of these
curves is interrupted at(=t when the correlation with the
initial conditions is reached. The area wunder each curve
gives the corresponding value at time t of the transient
diffusion coefficient. At very short times this area Iis
very small both because Ce(@) starts from low values, and
because it is interrupted at short . The first effect is a

consequence of the transport transient , the electrons heing
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still "cold", while the second effect is present because at
small times the correlations are not yet established
(correlation transient). As t increases, the area reaches
larger values, and it is maximum when the positive part of C
(C) is totally present, and a negative part is not vyet
present. This leads to the overshoot of the transient
diffusivity. When negative correlations are established,
D(t) decreases toward the steady-state value, which is
attained when the shape of Ce(t) reproduces the steady-state
function and the integral of the autocorrelation function is
extended to all significant values of & .
It is particularly interesting to reproduce the same
analysis for the intervalley contribution alone. Fig.4.12
shows the transient autocorrelation function Ck(a) for the
intervalley velocity fluctuations ?;vvv(t), defined in
Sect.4.2.1, as a function of for wvarious times t. The
most striking aspect of this set of curves is the presence

of a bump which is shifted toward a greater value of(, as t

increases. This phenomenon is clearly due to the velocity
overshoot in the two types of valleys which 1increases the
value of 5vﬂ)with respect to the steady state. As t
increases, this overshoot recedes more and more in the past,
so that it 1is seen at larger correlation times until it
vanishes, when any memory of the overshoot effect is lost.

The overshoot of the GaAs diffusivity /4.29/can be
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analysed in a similar way, and a negative part of the
transient autocorrelation function prevails over the
positive one at the times when D is found negative/4.29/.
This strong negative correlation is a consequence of the
electron transfer back aﬁd forth from central to upper
valleys, as discussed above,

As a final result, we report in Fig.4.13 an analysis of
the transient diffusivity 1in a case in which the electric
field is applied after the onset of the zero-field
correlations. Before application of the field, the
diffusivity slowly reaches the steady-state value in about
18 psec. When the electric field is applied, a transport
transient occurs, with heating of the carriers, on a shorter
time scale(in about 2 psec); during this time new
correlations are established and the diffusivity reaches the
new lower steady value, passing through a minimum with a
region of negative values. This negative region is in great
contrast with the overshoot of D seen for the case in
Fig.4.18. This can be explained by considering that the
first electrons which undergo intervalley scattering after
the field application are the fastest electrons in the
direction of the field; during the first part of the process
(zero~field correlation transient) the distributions of
carriers have fully developed the space-velocity

correlations at the basis of the diffusion process, so that
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a slowing down of the fastest particles due to intervalley
scattering produces a shrinking of the space distribution,
corresponding to the negative D. It may be useful to
compare the behaviour of D after the onset of the field in
Fig.4.13 with fig.4.10-b in order to appreciate the
influence of the initial conditions in the transient

diffusion.

4.3 Autocorrelation of Energy Fluctuations and Energy

Relaxation in presence of carrier-carrier interaction

4.3.1 The influence of carrier-carrier interaction on the

energy relaxation

Monte Carlo calculations of hot-electron phenomena in
semiconductors seem to indicate that e-e interaction
introduce, 1in general, small corrections to the transport

guantities even at high carrier concentrations /4.30/.

On the other hand, a strong dependence of energy
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relaxation time on carrier concentration in warm electron

conditions 1is observed at rather low carrier concentrations
135 16 . \ .

(10 -10 cm-3 in different semiconductors)

/4.31-4.33/.

The experimental data are obtained when the electron

concentration is changed in two different ways: namely, by

doping and compensating. In the latter case the electron
concentration decreases when that of the impurities
increases. Therefore the effect cannot be ascribed to

impurity scattering, and consequently it is thought to be
due to the interaction among carriers. For a detailed
discussion of the experimental data see Refs.4.34,4.35.

It is well known that e-e scattering, which is energy
and momentum conserving, cannot have a direct influence on
the physical mean quantities relative to the carrier
ensemble. However the presence of carrier interaction can
alter the probability of occurrence of other lattice
scatterings, especially those with a well defined threshold
of activation (e.g. emission of an optical or intervalley
phonon)/4.36,4.37/.

A previous comparison between experimental and

theoretical results was performed in Ref.4.37 by means of a

\."
)
0
g




Monte Carlo simulation of a carrier ensemble interacting

through a Coulomb field. The theoretical effect was weaker
than the experimentally observed.

A different possible approach 1is to consider the
interaction through two-carrier collisions. When a screened
Coulomb potential has been used the collisions have been
found to contribute to carrier distribution and
correlation functions /&58"[{«[;0/) but a comparison with
experimental energy reléxations has not been made.

In order to determine the energy relaxation time Eﬁs
from Monte Carlo simulation, we have proceeded in two
different ways.

The dependence of the carrier mean energy (€(t)%» on time
after the field has been switched on is recorded; under
warm-electron conditions, corresponding to weak deviations
from the thermal equilibrium, the above dependence can be

approximated as follows/4.35/:

- , -t/
(AW - (aeg D (A-e ) wn
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where {AE (t))= (éf(t))-%ﬁ? is the extra enerqgy at time t,
and <A610> is its value in stationary conditions. From a
best fit of the simulation data with Eq(4.17) a value for
can be obtained.

The above procedure is subject to the criticism that the

electron energy relaxation 1is itself a function of time in

the transient regime, during which the carrier distribution e
is heated up, even though this effect should not be
important for the dependence of EZ on carrier concentration.

The relaxation time can be well defined only in

stationary conditions, and it can be obtained by means of

v .

ALY
’

e’

the autocorrelation function of energy fluctuations from
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Z\e'(—g—/{:))?_ : cl-‘f] gé(e)'gé(éwl) (4.18)
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where gé; is the energy fluctuation of the ensemble and —

indicates time average, respectively.
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4.3.2 The Monte Carlo Procedure RN
: 1 RARD
a Theoretical calculations for the energy relaxation time iﬁ?\\|
- o WY
y LY '
o t o+
through the above-mentioned approach and a comparison with — =
t
g the experimental data have been performed for p-Ge. The
> choice falls on these experiments for two reasons. Firstly
.
the uncontrolled impurity background was low in these
N .
) measurements, thus in the range of controlled concentrations
X 13 15 . : . :
'y of 10 —-10" cm-3 the ionized impurity scattering can be
-i neglected /4.4|/. Next, the models for band structure and
'i lattice scattering for this material allow a simple
-
appproximation which gives satisfactory results /4.30/.
b
S The model of p-Ge wused hereafter is a widely used one
ﬁ /4.30/: only one heavy-mass subband is taken into account
ii which is considered spherical and parabolic with m=0.34m,;.
v
o’
a Optical phonons are considered dispersionless M We =0.037
ul ev). The deformation potential consta nt %cis taken to be
‘-
4 c . . .
£ 9%10**8 eV/cm, Nonelasticity of acoustic scattering is
= included in the way used in Ref.4.42; sound velocity and
; acoustic deformation potential are chosen as 3.85 x 10**5
i cm/sec and 3.25 eV, respectively. The crystal temperature

has been chosen as 100 K in order to allow the comparison

.
.
‘.
-
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with the experimental data.
. )
>
>, The Ensemble Monte Carlo procedure used for the
o calculations has been modified to include e-e interaction in
[~ the following way. Starting from an initial equilibrium
4
e
._J
ﬂ carrier distribution, a uniform and constant electric field
~

is switched on, and carrier dynamics is simulated during a
T
~ time step short enough as compared to the energy and
<
b momentum relaxation times, and even shorter than the time
e ¢
= between two successive interparticle collisions.
f Carrier-carrier collisions are introduced through a
) spherical screened Cculomb potential
- 2 - (5"

=\ - e A
\/(\’\ - ; - Q/ (4.19)

< LT € &o Y
o
J
<.,
n“.
s
- where r is the distance, £ is the relative dielectric
3
i constant, j} the inverse screening depth, which depends on

carrier density n. The Debye thermal-equilibrium value of/5
z !
i has been used, since warm-electron conditions have been
o
W

considered.

L

The scattering rate for two given carriers is as follows

B
. "I

)
e a4 A




S T T Y e v ywow e e s

109

/4.38/:

V@) me ke T &

= (4.20)

ks w32 6o M %})r (f

> >
where g = kc—k is the wavevector difference of the colliding

— R .
particles, k and kc are the wavevectors of the test carrier
and the counterpart electron before their collision.

The total scattering rate for an electron with wavevector

> .
k is given by

= JVINN e LT p
Tee (£) e %*[5 {[E,)JE (4.21)

-
Since the distribution in k-space of the counterparts

f(?c ) 1is not known a priori, the following rejection
technique has been used. A self scattering internal to the
. . L . . 2 2.
e-e interaction is introduced by substituting g/(g  + fE) in
Eg.(4.21) with its maximum value 1/2? . In this way Poe

self

(k) + PQ (k) results to be:
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This new e-e total scattering probability is introduced
among the other mechanisms. When an electron attempts an
intercarrier collision, a counterpart carrier is selected at
random from the particle distribution. If 3 is the
wavevector difference between tl.e Monte Carlo electron and
the counterpart, and a random number r results to be less
than ZF%} /(g**2+ F)**2), the e-e collision is accepted. In
this case the final states of both electrons involved into
the scattering process are selected according to the
differential cross section relative to the potential in
Eq.(4.19) and taking into account enerqgy and momentum
conservations.

In doing so the state of the Monte Carlo electron is
changed at the time of the collision; the state of the
counterpart is changed at the time in which its simulation

was suspended. Through this procedure the distribution of

the counterpart carriers is not exactly syncronous with the
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simulation time of the Monte Carlo electron, but this
difference 1is not relevant if the time-step duration At
is smaller than the time between two interparticle

collisions.

4.3.3 Results

Figs.4.14 and 4.15 show typical results obtained with the
Monte Carlo simulation following the two approaches
indicated in Sect.4.3.1.

Fig4.16 shows the dependence of ZE' on the electric field
at a fixed concentration. At the highest field values
considered here the condition of warm-electron regime may
not be fulfilled, but these fields have been considered here
only to check the consistence of the physical picture.

It can be seen here that the effect of e-e interaction is
to reduce ZE .

This effect can be explained through the general
considerations reported in Sect.4.3.1. At low fields few
carriers have enough energy to emit optical phonons, due to
the 1low heating 1involved, while the majority of carriers

interact - with acoustic phonons in a nearly elastic way.
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Intercarrier collisions change the effectiveness of the
interaction with the lattice. 1In particular, an essential
contribution to the enerqy losses comes from two passive
carriers (that is having energy less than K (G ) if,
during their <collision, one carrier gains enough energy for
a subsequent emisson of an optical phonon.

As a general confirmation of this picture, Fig.4.17 shows
the energy dissipation rate , normalised to the value
without e-e interaction, for the optical phonon scattering
as a function of the electric field at a carrier
concentration of 1.x 10|5 cm-3. It can be seen that at
low electric fields the rate of dissipation is substantially
enhanced with respect to the equilibrium case, due to the
increase of the "active" carriers, as effect of the e-e
scattering. At the highest fields, due to the heating, more
carriers are active also without e-e scattering, and the
guantities in Figs.4.16 and 4.17 become practically
insensitive to the interaction,

Finally in Fig.4.18 we report the normalised energy
relaxation time as a function of carrier concentration
compared with the experimental data of Ref.{31.

The two theoretical techniques do not show relevant
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error, there 1is no doubt that the effect theoretically b -
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as previously found. .xﬁy,ax

E~e interaction, even trated as two-particle collisions
cannot account for the experimental enhancement of energy
relaxation, and more sophisticated mechanisms must be

invoked.
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FIGURE CAPTIONS

Fig.4.1: velocity autocorrelation function for electrons in
Si, as obtained from a Monte Carlo simulation, at 77 K for
E=1pkV/cm applied along a (1887 (continuous 1line) and (1117

(dashed line) directions, respectively

Fig.4.2: a)autocorrelation function of thermal and
convective fluctuations for electrons in Si at 77 K and E
=1pkV/cm (see Sect.4.1.1); b) off-diagonal terms Cg) and
Cpe which contribute significantly to the total velocity

autocorrelation function for the case shown in a).

Fig.4.3: mean velocity (continuous line and left scale) and
distribution function (dashed 1line and right scale), as
functions of energy for electrons in Si at the indicated

temperature and field.

Fig.4.4: a) autocorrelation function of thermal,convective
and intervalley fluctuations for electrons in Si at 77 K and
E =10kV/cm (see Sect.4.1.1); b) off-diagonal terms CgL and
C ¢ which contribute to the total autocorrelation function

for the case shown a).

Fig.4.5: spectral density of velocity fluctuations and its
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components for electrons in Si at the indicated temperature
Eé and field obtained as Fourier transforms of the
;E autocorrelation function shown in Fig.4.1 and 4.4. The
_‘ lettering of the curves is defined in the text.
‘g Fig.4.6: spectral density of wvelocity fluctuations for
’4 electrons in Si at 77 K and E=2¢8 V/cm along a{@@)and a Q1)
li directions. Points refer to experimental data of Bareikis
% /4.23/ and lines refer to Monte Carlo calculations.
;2 Fig.4.7:(a) autocorrelation function of velocity
ii fluctuations and 1its diagonal terms,and (b) off-diagonal
W: terms for the case of electrons in GaAs at the indicated
_; temperature and field. In (b) a different vertical scale
;E has been used. .
ii Fig.4.8: mean velocity (continuous lines and left
S; scale) and distribution function (dashed 1lines and right
tﬁ scale) as functions of energy for electrons in the «central
5; valley in GaAs at T=308K. The numbers on the curves
;ﬁ indicate the field strength in kv/cm.
u:
é Fig.4.9: spectral density of velocity fluctuations and its
Z components for electrons in GaAs at the indicated

temperature and field obtained as Fourier transforms of the
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autocorrelation functions shown in Fig.4.7. The lettering

on the curves is defined in the text.

Fig.4.18: second central moment (a), longitudinal diffusion
coefficient (b), and mean velocity (c) as functions of time
for electrons in Si at 77 K and E=18 kV/cm along a Q11>

direction.

Fig.4.11: transient velocity autocorrelation function wvs.
correlation time © at fixed times t (reported in psec over
each curve in the figure) for electrons in Si at 77 K and
E=10kv/cm along a(lﬂd)directioﬁ. Each curve is interrupted
at (=t when the correlation with the initial conditions is
reached. The stationary ' autocorrelation function

(continuous line) is shown for comparison.

Fig.4.12: transient intervalley autocorrelation function
VsS. correlation time at fixed times t (reported in psec
over each curve in the fiqure) for electrons in Si at 77 K
and E=19¢ kV/cm along a (186> direction. Each curve is
interrupted at{=t, when the correlation with the initial
conditions is reached. The stationary intervalley

autocorrelation function (t»g8) is shown for comparison.

Fig.4.13: transient diffusivity as a function of time for
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electrons in Si at 77 K, in a physical situation in which a
field E4“ =10 kV/cm is switched on at time tg =9.57 psec
after the initial conditions (t=0) of uncorrelated

particles.

Fig.4.14:Carrier heating during the transient transport with
field E=78 V/cm and T=108 K. The continuous curves have
been obtained by a best fit of the simulation data with
Eq.{4.17). Numbers indicate carrier concentrations in units
of 10**15 cm-3. Points indicate simulation data for

n=5x1@**15 cm-3.

Fig.4.15:Autocorrelation function of energy fluctuations in
steady-state conditions without (closed circles) and with
(open circles) e-e interaction for a concentration

n=5x109**14 cm-3. T=1¢86 K; E=70 V/cm.

Fig.4.16:Relative energy relaxation time as a function of

field strength at a carrier concentration n=1x18**15
cm-3. Triangles and circles refer to data obtained by
fitting the transient heating and with the energy
autocorrelation function in steady-state,

respectively. T=100 K.

Fig.4.17:Relative energy loss through optical phonons at a
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carrier concentration n=1x18**15 cm~-3, as a function of

field strenght. T=1008 K.

Fig.4.18:Relative energy relaxation time as a function of
carrier concentration . Triangles and closed circles refer
to data at a field strenght E=7¢ V/cm obtained by fitting
the transient heating and with the energy autocorrelation
function, respectively. The cross indicates values obtained
at E=28 V/cm with the two techniques, indistinguishable in
this scale. Open circles refer to the experimental data {n

Ref.4.31.
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5. CONCLUSIONS

The present report describes the research performed at
the Department of Physics of the University of Modena for
the ERO contract number DAJA45/83/C/0039 "Monte Carlo
analysis of quantum transport and fluctuation in
semiconductors".

As regards the analysis of velocity and energy
fluctuations of charge carriers in semiconductors, the new
results have been obtained and'published (they are described
in Chapter 4). In particular, both transient and
steady-state regimes have been studied and the effect on
noise of the wvarious sources of fluctuations have been
analised.

The effect of carrier-carrier interaction on energy
fluctuations and therefore onenergy relaxation time has also
been studied: the result is that a theoretical reduction of
the energy relaxation time is indeed observed in the Monte
Carlo simulation, but this reduction 1is not as strong as
that observed in experiments.

As regard the extension of the Monte Carlo approach to

study quantum transport, the research has required a careful
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analysis of the state of the art, which has been presented
in Chapter 2. A Monte Carlo method to solve
integro-differential equations of the same type of transport
equations has been developed. The possibility to apply such
a method to the solution of the Liouville equation for
quantum transport of electrons in a phonon field has been
investigated. The set up of the numerical procedure for this
case of practical importance is under development and

requires further work.
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